Angle Addition Identities

You can determine the value of a trigonometric function of a given angle when you can express the sum (or difference) of angles that can comprise that angle.

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\sin \beta \cos \alpha \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \\
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} .
\end{aligned}
$$

Source: ck12.org
For example, $\sin 75=\sin (30+45)=\sin 30 \cos 45+\sin 45 \cos 30$

$$
\begin{aligned}
& =(1 / 2)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right. \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Double Angle and Half Angle Identities

Double angle identities are trig identities that can be used to rewrite trig functions that have a double angle.

Below are the double angle identities and an example of how they are used.

$$
\begin{aligned}
\sin (2 \theta)= & 2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta) & =\cos ^{2}(\theta)-\sin ^{2}(\theta) \\
& =1-2 \sin ^{2}(\theta) \\
& =2 \cos ^{2}(\theta)-1 \\
\tan (2 \theta) & =\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

Example: Given $\sin (\Theta)=\frac{4}{5}$ and $0<\theta<\frac{\pi}{2}$ find $\sin (2 \Theta)$

$$
\begin{aligned}
\sin (2 \theta) & =2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) \\
& =\frac{24}{25}
\end{aligned}
$$

The half-angle formulas can be used in the same way.

$$
\begin{aligned}
& \text { Half-Angle Formulas } \\
& \sin (\theta / 2)= \pm \sqrt{\frac{1-\cos \theta}{2}} \\
& \cos (\theta / 2)= \pm \sqrt{\frac{1+\cos \theta}{2}} \\
& \tan (\theta / 2)= \pm \frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta}
\end{aligned}
$$

Source: ck12.org

