Right Triangles

*A right triangle consists of one side that has an angle measurement of 90°.

*The long side opposite the 90° is the hypotenuse. The lengths of all sides can be related through the Pythagorean theorem which states that the sum of the squares of the two non-hypotenuse sides will equal the square of the hypotenuse.

$$
A^{2}+B^{2}=C^{2}
$$

Or, as it relates to the right triangle: $\quad(\text { Side } 1)^{2}+(\text { Side } 2)^{2}=$ Hypotenuse 2
So, if you know the lengths of two sides of a right triangle, you can solve for the length of the third side.
Example 1: If the shorter (non-hypotenuse sides) of a right triangle are 4 cm and 3 cm , what is the length of the hypotenuse?

$$
(4)^{2}+(3)^{2}=C^{2}
$$

$$
\begin{aligned}
16+9 & =C^{2} \\
25 & =C^{2} \\
\sqrt{25} & =C \\
5 & =C \quad \text { The length of the hypotenuse is } 5 \mathrm{~cm} .
\end{aligned}
$$

Example 2: If the hypotenuse of a right triangle has a length of 16 inches and one of the other sides has a length of 8 inches, what is the length of the third side?

$$
\begin{aligned}
(8)^{2}+B^{2} & =16^{2} \\
64+B^{2} & =256 \\
B^{2} & =192 \\
B & =\sqrt{192} \\
B & =\sqrt{64} \sqrt{3}=8 \sqrt{3} \quad \text { The length of the missing side is } 8 \sqrt{3} \text { inches. }
\end{aligned}
$$

