Probability

General Rules

- $0 \le P \le 1$
 - Probabilities are values between zero and 1.
 - They CANNOT be:
 - Negative
 - Greater than 1
 - $\circ~$ They CAN be:
 - Fractions
 - Decimals
 - Percentages

•
$$P(E) = \frac{n(E)}{n(S)}$$

 To find the probability of an event (E), count the number of times the event happens and divide by the total number of outcomes in the sample space (S)

Addition Rules

- $P(E) + P(E^c) = 1$ or $1 P(E) = P(E^c)$
 - The <u>complement</u> of an event is the probability that event does NOT happen.
 - Two complements add up to 100% or 1.
- OR
 - Mutually Exclusive
 - Two events that do NOT happen at the same time.
 - P(E or F) = P(E) + P(F)
 - NOT Mutually Exclusive
 - Two events that DO happen at the same time.
 - P(E or F) = P(E) + P(F) P(E and F)

Multiplication Rules

- AND
 - \circ Independent
 - Two events that are NOT affected by each other.
 - P(E and F) = P(E) * P(F)
 - o Dependent (aka NOT independent)
 - Two events that ARE affected by each other.
 - P(E and F) = P(E) * P(F|E)
- Fundamental Counting Principle
 - If multiple independent events happen consecutively, the total number of outcomes is found by multiplying the events.

•
$$k_1 * k_2 * k_3 * \dots k_n$$

• Conditional Probabilities

$$\circ P(F|E) = \frac{P(E \text{ and } F)}{P(E)}$$

- \circ $\,$ The sample space changes based on the condition that is applied.
- \circ $\,$ Key words to look out for:
 - If
 - Given that

