Writing Binary Ionic Compound Formulas

THIS PRESENTATION WILL EXPLAIN HOW TO WRITE THE FORMULAS FOR BINARY IONIC COMPOUNDS.

A binary ionic compound contains an ion that is a metal (cation) and an ion that is a nonmetal (anion).

IONIC COMPOUND = METALLIC ION + NONMETALLIC ION

Determining Charge on Cations

- (1) Metallic ions will have a positive charge. Ions of metals in the first column of the periodic table (IA) will have a 1+ charge.
 - ▶ Example: Lithium ion is written as Li¹⁺; the potassium ion is written as K^{1+;}
- ▶ (2) Metals in the second column (2A) will have a 2+ charge.

Example: Magnesium ion is written Mg^{2+} ; the calcium ion is written Ca^{2+} .

- (3) Aluminum ion has a 3+ charge (Al³⁺).
- (4) Transition metals have some elements with only one charge (silver ion is always Ag¹⁺) and some elements with more than one possible charge (iron ion can be either Fe²⁺ or Fe³⁺).

Determining Charge on Anions

- (1) A nonmetallic element's placement on the periodic table will give you an indication as to the charge on the ion.
 - Ions of the halogen elements (Group 7A) are always 1-. For example, the fluoride ion is written F¹⁻.
 - Ions formed from the first three elements in group 6A always form 2- ions. For example, the oxide ion is O²⁻ and the sulfide ion is always S²⁻.
 - Ions formed from the first two elements in group 5A always form 3- ions. Those ions would be the nitride ion (N³⁻) and the phosphide ion (P³⁻).
- ▶ (2) Note that all of the anions end in the suffix –*ide*.

Determining Binary Ionic Compound Formulas

- The guiding principle when writing binary ionic compound formulas is that the positive charges on the cation must balance the negative charges on the anion.
- Examples: For Na¹⁺ and Cl^{1-,} the resulting formula would be NaCl (1 positive charge balanced with one negative charge); for Ca²⁺ and l¹⁻, the resulting formula would be Cal₂ because you will need 2 negative charges from iodide ions to balance the positive 2 charge on the calcium ion.
- One easy way to determine the formula if the charges do not cancel out is to use the "criss-cross" method.
 - ▶ (1) Write the cation first with its charge
 - ▶ (2) Write the anion second with its charge.
 - (3) Drop the "+" and "-" signs and bring the number of the charge down as a subscript for the other element. The result should be the correct formula for that compound.

Examples of Binary Ionic Compound Formulas

K^{1+} and $O^{2-} = K_2O$	Mg ²⁺ and Cl ¹⁻ = MgCl ₂	Al ³⁺ and O ²⁻ = Al ₂ O ₃
CU^{2+} and $O^{2-} = CuO$	K^{1+} and $N^{3-} = K_3 N$	$Ca^{2+} and P^{3-} = Ca_3P_2$
Al ³⁺ and S ²⁻ = Al ₂ S ₃	Fe ³⁺ and P ³⁻ = FeP	Ba ²⁺ and Br ¹⁻ = BaBr ₂