Inverse Trig Functions

An inverse trig function is a function that reverses the trig function. For example, if the Sin x = y, then the inverse sine (\sin^{-1}) can be written as $\sin^{-1} y = x$. Another way to write \sin^{-1} is arcsin. The same holds for the other trig functions.

Here are some examples of inverse sin functions.

$$\sin^{-1}(1) = 90^{\circ} \text{ or } \frac{\pi}{2}$$

arctan $(\frac{\sqrt{3}}{3}) = 30^{\circ} \text{ or } \frac{\pi}{6}$

Note that for inverse sine and cosine functions, the domain is $-1 \le x \le 1$.

For inverse sine, the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

For inverse cosine, the range is $[0, \pi]$

The domain of inverse tangent is $(-\infty, \infty)$ and the range is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The domain of inverse cotangent is $(-\infty, \infty)$ and its range is $(0, \pi)$.

The domain of inverse cosecant is $(-\infty, -1] \cup [1, \infty)$ and its range is $[-\frac{-\pi}{2}, 0] \cup (0, \frac{\pi}{2}]$.

The domain of inverse secant is $(-\infty, -1] \cup [1, \infty)$ and its range is $[0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$.